Copied to
clipboard

G = C3×D8⋊C22order 192 = 26·3

Direct product of C3 and D8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D8⋊C22, C12.84C24, C24.47C23, C4○D83C6, D84(C2×C6), C8⋊C226C6, Q164(C2×C6), C4.68(C6×D4), SD163(C2×C6), C8.C226C6, C8.2(C22×C6), C4.7(C23×C6), (C2×C24)⋊22C22, C12.473(C2×D4), (C2×C12).527D4, (C6×D4)⋊67C22, (C3×D8)⋊20C22, (C2×M4(2))⋊5C6, M4(2)⋊5(C2×C6), (C6×Q8)⋊56C22, D4.4(C22×C6), C23.20(C3×D4), C22.25(C6×D4), (C22×C6).38D4, Q8.8(C22×C6), (C6×M4(2))⋊10C2, (C3×Q16)⋊18C22, (C3×D4).37C23, C6.205(C22×D4), (C3×Q8).38C23, (C2×C12).686C23, (C3×SD16)⋊19C22, (C3×M4(2))⋊26C22, (C22×C12).467C22, (C2×C8)⋊3(C2×C6), C2.29(D4×C2×C6), C4○D47(C2×C6), (C6×C4○D4)⋊28C2, (C3×C4○D8)⋊10C2, (C2×C4○D4)⋊16C6, (C2×D4)⋊16(C2×C6), (C2×Q8)⋊18(C2×C6), (C3×C8⋊C22)⋊13C2, (C2×C4).138(C3×D4), (C2×C6).421(C2×D4), (C3×C4○D4)⋊25C22, (C3×C8.C22)⋊13C2, (C2×C4).47(C22×C6), (C22×C4).83(C2×C6), SmallGroup(192,1464)

Series: Derived Chief Lower central Upper central

C1C4 — C3×D8⋊C22
C1C2C4C12C3×D4C3×D8C3×C8⋊C22 — C3×D8⋊C22
C1C2C4 — C3×D8⋊C22
C1C12C22×C12 — C3×D8⋊C22

Generators and relations for C3×D8⋊C22
 G = < a,b,c,d,e | a3=b8=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd=b5, be=eb, dcd=ece=b4c, de=ed >

Subgroups: 402 in 262 conjugacy classes, 158 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C2×C24, C3×M4(2), C3×D8, C3×SD16, C3×Q16, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, D8⋊C22, C6×M4(2), C3×C4○D8, C3×C8⋊C22, C3×C8.C22, C6×C4○D4, C3×D8⋊C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, C6×D4, C23×C6, D8⋊C22, D4×C2×C6, C3×D8⋊C22

Smallest permutation representation of C3×D8⋊C22
On 48 points
Generators in S48
(1 37 18)(2 38 19)(3 39 20)(4 40 21)(5 33 22)(6 34 23)(7 35 24)(8 36 17)(9 44 31)(10 45 32)(11 46 25)(12 47 26)(13 48 27)(14 41 28)(15 42 29)(16 43 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 18)(19 24)(20 23)(21 22)(25 26)(27 32)(28 31)(29 30)(33 40)(34 39)(35 38)(36 37)(41 44)(42 43)(45 48)(46 47)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)(42 46)(44 48)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)

G:=sub<Sym(48)| (1,37,18)(2,38,19)(3,39,20)(4,40,21)(5,33,22)(6,34,23)(7,35,24)(8,36,17)(9,44,31)(10,45,32)(11,46,25)(12,47,26)(13,48,27)(14,41,28)(15,42,29)(16,43,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,40)(34,39)(35,38)(36,37)(41,44)(42,43)(45,48)(46,47), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)>;

G:=Group( (1,37,18)(2,38,19)(3,39,20)(4,40,21)(5,33,22)(6,34,23)(7,35,24)(8,36,17)(9,44,31)(10,45,32)(11,46,25)(12,47,26)(13,48,27)(14,41,28)(15,42,29)(16,43,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,40)(34,39)(35,38)(36,37)(41,44)(42,43)(45,48)(46,47), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33) );

G=PermutationGroup([[(1,37,18),(2,38,19),(3,39,20),(4,40,21),(5,33,22),(6,34,23),(7,35,24),(8,36,17),(9,44,31),(10,45,32),(11,46,25),(12,47,26),(13,48,27),(14,41,28),(15,42,29),(16,43,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,18),(19,24),(20,23),(21,22),(25,26),(27,32),(28,31),(29,30),(33,40),(34,39),(35,38),(36,37),(41,44),(42,43),(45,48),(46,47)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40),(42,46),(44,48)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H3A3B4A4B4C4D4E4F4G4H4I6A6B6C···6H6I···6P8A8B8C8D12A12B12C12D12E···12J12K···12R24A···24H
order12222222233444444444666···66···688881212121212···1212···1224···24
size11222444411112224444112···24···4444411112···24···44···4

66 irreducible representations

dim111111111111222244
type++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4C3×D4C3×D4D8⋊C22C3×D8⋊C22
kernelC3×D8⋊C22C6×M4(2)C3×C4○D8C3×C8⋊C22C3×C8.C22C6×C4○D4D8⋊C22C2×M4(2)C4○D8C8⋊C22C8.C22C2×C4○D4C2×C12C22×C6C2×C4C23C3C1
# reps114442228884316224

Matrix representation of C3×D8⋊C22 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
1010
1001
72100
710072
,
0110
0100
17200
071072
,
1001
0101
00720
00072
,
046460
2704627
002746
005446
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[1,1,72,71,0,0,1,0,1,0,0,0,0,1,0,72],[0,0,1,0,1,1,72,71,1,0,0,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,72,0,1,1,0,72],[0,27,0,0,46,0,0,0,46,46,27,54,0,27,46,46] >;

C3×D8⋊C22 in GAP, Magma, Sage, TeX

C_3\times D_8\rtimes C_2^2
% in TeX

G:=Group("C3xD8:C2^2");
// GroupNames label

G:=SmallGroup(192,1464);
// by ID

G=gap.SmallGroup(192,1464);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,360,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^8=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d=b^5,b*e=e*b,d*c*d=e*c*e=b^4*c,d*e=e*d>;
// generators/relations

׿
×
𝔽